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Abstract. Transverse momentum dependent parton distribution and fragmentation functions are described
by hadronic matrix elements of bilocal products of field operators off the light-cone. These bilocal prod-
ucts contain gauge-links, as required by gauge-invariance. The gauge-links are path-ordered exponentials
connecting the field operators along a certain integration path. This integration path is process-dependent,
depending specifically on the short-distance partonic subprocess. In this paper we present the technical de-
tails needed in the calculation of the gauge-links, and a calculational scheme is provided to obtain the gauge
invariant distribution and fragmentation correlators corresponding to a given partonic subprocess.

PACS. 12.38.-t; 13.85.Ni; 13.88.+e

1 Introduction

Gauge-links (also called eikonal or Wilson lines) play an
important role in the description of single-spin asymme-
tries (SSA’s). Since the initial surprise about the large
SSA’s in hadron–hadron collisions [1–7], several mech-
anisms have been proposed as an explanation [8–14]. In
these mechanisms correlations between spin and intrin-
sic transverse momentum of partons play a central role.
They can be divided into two classes; the T -even and the
T -odd correlations. The latter can give rise to single-spin
asymmetries.
A mechanism for generating T -odd effects was intro-

duced by Qiu and Sterman in [11]. They took the contri-
bution of gauge fields at light-cone past/future infinity into
account and found that those matrix elements could lead
to single-spin asymmetries. These matrix elements are re-
ferred to as gluonic poles [14–16]. Other mechanisms to
generate SSA’s had been introduced by Collins [13] and by
Sivers [9, 10]. The Collins mechanism originates from final-
state interactions between a detected outgoing hadron and
its accompanying jet. These interactions generate T -odd
fragmentation functions. For distribution functions there
are no corresponding initial state interactions and, there-
fore, the Sivers mechanism was expected to vanish. How-
ever, a few years ago Brodsky, Hwang and Schmidt showed
with a model calculation that T -odd effects can also be
generated in the initial state, reviving the Sivers mech-
anism [17]. At the same time the process dependence of
the underlying mechanism was demonstrated [18, 19]. The

a e-mail: cbomhof@nat.vu.nl
b e-mail: mulders@few.vu.nl
c e-mail: fetze.pijlman@philips.com

equivalence of those results and the transverse pieces of
the gauge-link in transverse momentum dependent (TMD)
correlation functions were analyzed by Belitsky, Ji, and
Yuan in [20]. Generalizing their results it was found by
Boer, Mulders and Pijlman in [21] that the effects of trans-
verse gauge-links, which lead to T -odd effects, are equiva-
lent to the Qiu–Sterman mechanism, uniting the various
mechanisms.
The gauge-links, necessary to have gauge invariant dis-

tribution functions, have an integration path that turns
out to be process-dependent. The path structure of the
gauge-links gives rise to T -odd TMD distribution func-
tions. In [22] and [23] we considered the kind of integra-
tion paths that can appear in general scattering processes.
With an explicit calculation in QED it was shown that
a large set of different gauge-links can appear. Also for
QCD several results were given. In this paper we address
some of the technicalities that were skipped in [22].We also
refer the reader to the detailed study of gauge-links by Pijl-
man [24]. In the next section we state the steps through
which the gauge-links can be obtained for a general pro-
cess. In Sect. 3 some examples are given and in Sect. 4 we
present the derivation of the conjectures made in the pre-
ceding sections. In the appendix we enumerate the gauge-
links in processes like proton–proton scattering, giving the
results for 2→ 2 partonic subprocesses. In this paper, we
will only give a global discussion of the consequences of our
results. In an earlier paper it was shown how the presence
of gauge-links can lead to modified hard parts, referred to
as gluonic pole cross sections, in single-spin asymmetries
in p↑p→ ππX [23]. The results obtained in this paper will
enable us to calculate all the gluonic pole cross sections in
p↑p→ ππX in a forthcoming paper. Possible issues related
to factorization have been addressed in [24].
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2 Calculating gauge-links

For describing hard hadronic processes we start with the
TMD distribution and fragmentation correlators [25–32]

Φ(x, pT ) =

∫
d(ξ·P ) d2ξT
(2π)3

eip·ξ 〈P |φ†(0)φ(ξ) |P 〉 ,

(1a)

∆(z, kT ) =
∑
X

1

4z

∫
d(ξ·Ph) d2ξT
(2π)3

e−ik·ξ

× 〈0|φ(0) |Ph;X〉 〈Ph;X|φ
†(ξ) |0〉 , (1b)

where the φ represent color-triplet quark fields ψr i (Dirac
index r and color index i) in quark correlators Φq and
∆q or color-octet gluon field strengths F

µν
a (color in-

dex a) in gluon correlators Φg and∆g. The Lorentz indices
on the gluon fields and the Dirac indices on the quark
fields will mostly be suppressed throughout this paper.
For the field strengths we will often use the matrix repre-
sentation Fµνij = F

µν
a t

a
ij and similarly for the gauge fields

Aµ. The ta = 1
2λ
a are the color matrices satisfying the

commutation relations [ta, tb] = ifabc tc and normalization
Tr[tatb] = TF δab. For the parton momenta we use the Su-
dakov decompositions with for each hadron’s momentum
a complementary light-like vector n such that

p= xP +σ n+pT , (incoming particle) (2a)

k =
1

z
Ph+σh nh+kT , (outgoing particle) (2b)

with x=p·n/P ·n, pT ·P = pT ·n= 0, σ=(p·P−xM2)/(P ·n)
and similar relations for the components of k.
The bilocal products of field operators in the correla-

tion functions in (1) contain gauge-links U [C](η; ξ) to ren-
der such products properly gauge invariant. The gauge-
links are path-ordered exponentials

U [C](η; ξ) = P exp
[
− ig

∫
C

dz ·A(z)
]
. (3)

This gauge-link is a matrix in color space. The C is an in-
tegration path connecting the space-time points ξ and η.
In TMD correlation functions the requirement of gauge-
invariance alone does not uniquely fix this integration
path. The gauge-links are obtained by resumming all dia-
grams describing the exchange of collinear gluons between
the soft and hard parts [33, 34]. Hence, the integration path
is fixed by the hard part of the process.
All gauge-links that we will encounter are composed of

Wilson lines in the light-cone and transverse directions:

Un[a;b] = P exp
[
− ig

∫ b
a

dz n ·A(z)
]
, (4a)

and

UT[a;b] = P exp
[
− ig

∫ b
a

dzT ·AT (z)
]
. (4b)

The space-time points consist of light-like and transverse
components a= (a−,aT ) and a

+ ≡ a ·n= 0. Here the vec-
tor n is the light-like vector complementary to the mo-
mentum of the parent/daughter hadron of the gluon A.
Hence, this vector might be different in correlation func-
tions corresponding to different hadrons. The gauge-links
in the distribution functions in semi-inclusive deep inelas-
tic scattering (SIDIS) and the Drell–Yan (DY) process are
U [+] and U [−], respectively, where (see Fig. 1)

U [±] =Un[(0−,0T );(±∞−,0T )]U
T

[(±∞−,0T );(±∞−,�T )]

× UT[(±∞−,�T );(±∞−,ξT )]U
n
[(±∞−,ξT );(ξ

−,ξT )]
. (5)

In processes involving more complicated partonic pro-
cesses than the ones in SIDIS and DY also more com-
plicated link structures can occur. Notably, loops U [�] =
U [+] U [−]† = U [−]† U [+] may emerge.
The gauge-links are included in the correlation func-

tions in (1) by taking for φ parallel displaced fields [35]. For
instance, in the quark correlator one encounters

φ(ξ) −→ Ψ(ξ)≡ U [C](η; ξ)ψ(ξ)

= P exp
[
− ig

∫
C

dsµ A
µ
]
ψ(ξ) , (6)

or infinitesimally, such that η = ξ+dη,

Ψ(ξ) = ( 1+ ig dηµ A
µ
a t
a ) ψ(ξ) . (7)

Similarly, the field φ(0)†→ Ψ†(0)≡ ψ†(0)U(0; η) is a par-
allel displaced field connecting to the same point η as the
field φ(ξ). Therefore, it is the nonlocal color gauge invari-
ant operator combination ψ†(0)U(0, ξ)ψ(ξ) involving an
integration path connecting ξ and 0 that will appear in the
quark correlator. In the gluon correlator we will encounter
the gauge-link structure

φ(ξ) −→ Fαβ(ξ)≡ U [C
′](η; ξ)Fαβ(ξ)U [C

′′](ξ; η′)

= P exp
[
− ig

∫
C′
dsµA

µ
]
Fαβ(ξ)

×P exp
[
− ig

∫
C′′
dsν A

ν
]
, (8)

or infinitesimally, with η = ξ+dη and η′ = ξ+dη′,

F
αβ(ξ)

=
(
1+ ig dηµA

µ
b t
b
)
Fαβa (ξ) t

a ( 1− ig dη′ν A
ν
c t
c ) . (9)

The integration paths C′ and C′′ can be different. Hence,
in general, the Fαβ is not a standard parallel displaced

Fig. 1. The gauge-link structure in the correlator Φq in SIDIS:

U [+] (a) and DY: U [−] (b)
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field strength. For a standard displaced field strength op-
erator the integration paths and link endpoints in (8) are
identical:

F
αβ(ξ) = U [C](η; ξ)Fαβa (ξ) t

a U [C](ξ; η)

≡
(
U [C](η; ξ)

)
ab
Fαβb (ξ) t

a . (10)

The last step defines the gauge-link in the 8-dimensional
adjoint representation

(
U [C](η; ξ)

)
ab
=
1

TF
Tr
[
ta U [C](η; ξ) tb U [C]†(η; ξ)

]
.

(11)

Infinitesimally it reads

(
U [C](η; ξ)

)
ab
Fαβb (ξ) =

(
δab+ g dηµA

µ
c f
cab
)
Fαβb (ξ) .

(12)

In order to properly treat transverse momentum depen-
dent correlators, one needs the more general 3-dimensional
matrix representation in (8) allowing for different gauge-
link structures left and right of the field strength tensor.
In the gluon correlator nonlocal color gauge invariant com-

binations such as Tr[U [C1](ξ; 0)Fαβ(0)U [C2](0; ξ)F γδ(ξ) ]
will appear.

Table 1. Fields and gauge-links that play a role in hadron correlators. For comparison the standard free
wave functions of the partons in the hard scattering amplitudes are given in the first column. The second
column shows how the partons appear in the correlators. The third column gives the contributions of the
external partons to the various gauge-links. The Un[a;b] are theWilson lines along the light-cone direction

n given in (4). The upper table is for the diagram corresponding to the hard amplitude. The lower table
for the diagram corresponding to the conjugate amplitude

contribution to
‘free’ wave functions fields in correlator other gauge-links

incoming quark ui(p) 〈X|δij ψj(ξ)|H〉 e
ip·ξ

(
Un[ξ;−∞]

)
ij

incoming antiquark vi(p) 〈X|ψj(ξ) δji|H〉 e
ip·ξ

(
Un[−∞;ξ]

)
ji

incoming gluon εa(p) 〈X|δab F
µν
b (ξ)|H〉 e

ip·ξ
(
Un[ξ;−∞]

)
ab

outgoing quark ui(k) 〈hX|ψj(ξ) δji|0〉 e
−ik·ξ

(
Un[+∞;ξ]

)
ji

outgoing antiquark vi(k) 〈hX|δij ψj(ξ)|0〉 e
−ik·ξ

(
Un[ξ;+∞]

)
ij

outgoing gluon ε∗a(p) 〈hX|Fµνb (ξ) δba|0〉 e
−ik·ξ

(
Un[+∞;ξ]

)
ba

contribution to
‘free’ wave functions fields in correlator other gauge-links

incoming quark ui(p) 〈H|ψj(0) δji|X〉
(
Un[−∞;0]

)
ji

incoming antiquark vi(p) 〈H|δij ψj(0)|X〉
(
Un[0;−∞]

)
ij

incoming gluon εa(p) 〈H|Fµνb (0) δba|X〉
(
Un[−∞;0]

)
ba

outgoing quark ui(k) 〈0|δij ψj(0)|hX〉
(
Un[0;+∞]

)
ij

outgoing antiquark vi(k) 〈0|ψj(0) δji|hX〉
(
Un[+∞;0]

)
ji

outgoing gluon ε∗a(p) 〈0|δab F
µν
b (0)|hX〉

(
Un[0;+∞]

)
ab

In order to find the gauge-link in a particular correlator
one has to absorb the summation of all the gluon couplings
to the hard part. At leading twist this involves gluon fields
collinear to the hadron’s momentum Aµ ∝ (A·n)Pµ. As
will be argued in Sect. 4, the resummation of all collinear
gluon insertions leads to the attachment of Wilson lines to
every external leg of the basic hard part, except to those
that connect the hard part and the correlator under consid-
eration. The kind of Wilson lines attached to the external
legs depends only on the nature of the external partons and
not on the long or short-distance processes. They are sum-
marized in Table 1. The final result is, then, obtained by
pulling all the Wilson lines through the color charges of the
hard parts, moving them to the correlator under considera-
tion. There they combine into the required gauge-link. The
whole subprocess dependence of the gauge-link structure
comes from this last step.
The resummation of collinear gluons described above

has lead to a certain link structure in the ξ− ∝ ξ·P di-
rection. In the appendix we will indicate how this struc-
ture is appropriately closed in the transverse direction at
ξ− = ±∞ by also taking transverse gluons into account.
This completes the derivation of the full gauge-link and
provides us with a calculational scheme (in an arbitrary
gauge) for a general scattering diagram. Summarizing, the
calculational scheme consists of the following steps:
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1. Consider the diagram for a specific elementary squared
amplitude. Rather than as free spinors, the external
partons appear as matrix elements given in the column
“fields in correlator” in Table 1, which in turn appear in
the distribution and fragmentation correlators.

2. In order to obtain the gauge-link in the TMD correlator
of a specific parton one needs to resum the insertions of
gluons collinear to this parton. For a particular correla-
tor, this resummation is achieved by replacing the color
wave functions of the other external partons with the
appropriate Wilson lines. That is, the δij for fermions
and the δab for vector bosons should be replaced by the
Wilson lines given in the column “contribution to other
gauge-links” in Table 1.

3. Next one can use color flow identities, such as

taijt
a
kl = TF

(
δilδjk−

1

Nc
δijδkl

)
, (13)

to pull the Wilson lines through the color structure of
the hard parts. Only the color structure of the hard part
is relevant. All momentum dependence as well as all
other correlators (in which the colors of partons in am-
plitude and conjugate amplitude are contracted) can be
discarded. In the final expression the transverse pieces
of the gauge-link must be included.

4. The gauge-link is now simply obtained from the re-
sulting expression. By applying steps 1 through 3 one
has obtained the expression for the bare diagram with
an additional structure multiplying the external leg of
the parton under consideration. This structure is the
gauge-link that enters in the TMD correlation function
of this parton.

To illustrate the procedure outlined above, we will give
some characteristic examples in the next section.

3 Examples

3.1 Distribution in SIDIS and DY

Here we will show that the rules given in the previous
section reproduce the future and past pointing Wilson

Fig. 2. The correlators for the leading hard subprocesses in
SIDIS, DY and e+e−-annihilation

lines (5), appearing in the quark correlators in the SIDIS
and DY processes. The color parts of the expressions of the
SIDIS, DY and e+e−-annihilation diagrams are Tr[Φq∆q],
Tr[ΦqΦq] and Tr[∆q∆q], respectively (see Fig. 2). Before
the usual color summation (distribution) or color averag-
ing (fragmentation) is carried out, the matrix elements in
the correlation functions are

(
Φq
)
ij
(p) =

∑
X

∫
d4ξ

(2π)4
eip·ξ 〈X|ψi(ξ) |H〉 〈H|ψj(0) |X〉 ,

(14a)

(
Φq
)
ij
(p) =

∑
X

∫
d4ξ

(2π)4
eip·ξ 〈H|ψi(0) |X〉 〈X|ψj(ξ) |H〉 ,

(14b)(
∆q
)
ij
(p)

=
∑
X

∫
d4ξ

(2π)4
e−ip·ξ 〈0|ψi(0) |hX〉 〈hX|ψj(ξ) |0〉 , (14c)

(
∆q
)
ij
(p)

=
∑
X

∫
d4ξ

(2π)4
e−ip·ξ 〈hX|ψi(ξ) |0〉 〈0|ψj(0) |hX〉 . (14d)

Following step 2, we resum all collinear interactions of glu-
ons for the incoming quark correlator Φq(p) in SIDIS and
DY by taking the appropriate Wilson lines (as prescribed
by Table 1) instead of the matrix elements in (14) for the
other correlators. This amounts to making the replacement

(∆q)ij →
(
Un[0;∞]U

n
[∞;ξ]

)
ij
, (15a)

in SIDIS and the replacement

(Φq)ij →
(
Un[0;−∞]U

n
[−∞;ξ]

)
ij
, (15b)

in DY. The quark correlator Φq is left untouched since
it is its gauge-link that we are calculating. Making these
replacements and including the transverse pieces of the
gauge-links at ξ− ∝ ξ·P = ±∞, the color parts of the
expressions for SIDIS and DY become Tr[Φq U [+]] and
Tr[Φq U [−]], respectively. For SIDIS we have now obtained
the TMD correlator (performing the integration over
p− ∝ p·P )

Φ[+]q (x, pT ) =

∫
d(ξ·P )d2ξT
(2π)3

eip·ξ 〈H|ψ(0)U [+] ψ(ξ) |H〉 .

(16)

Hence, we indeed reproduce the familiar gauge invariant
quark correlator with a future pointing Wilson line for
SIDIS and a correlator with a past pointing Wilson line for
DY, as indicated in Fig. 2. That figure enumerates all cor-
relators appearing in simple electroweak processes.
The occurrence of a future pointing Wilson line in

SIDIS and a past pointing Wilson line in DY is sometimes
assigned to the virtual photon being space-like in SIDIS
and time-like in DY. Here we see that the appropriate point
of view is that in SIDIS one gets a future pointing Wilson
line, because the color flow runs via an outgoing quark.
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Similarly, one gets a past pointing Wilson line in DY, be-
cause there the color flow runs via an incoming antiquark.
That is the point of view that is generalized to arbitrary
processes in this paper.

3.2 Fragmentation in SIDIS

We consider the gauge-link that enters in the quark frag-
mentation correlator in SIDIS. This gauge-link is obtained
by resumming all collinear gluons coming from the quark
fragmentation correlator ∆(k). Following step 2, this is
done by attaching the appropriate Wilson lines to the ma-
trix elements of the quark correlator (14a) as prescribed by
Table 1. This amounts to making the replacement

(Φq)ij →
(
Un[ξ;−∞]U

n
[−∞;0]

)
ij
. (17)

The fragmentation correlator ∆q is left untouched, since
it is its gauge-link that we are calculating. Making the re-
placement (17) in the color part Tr[Φq∆q] of the expression
for the SIDIS process, it becomes Tr[Un[−∞;0]∆q U

n
[ξ;−∞]].

Hence, we have obtained the quark fragmentation correla-
tor (averaging over color indices is implicit)

∆[−]q (z, kT )

=
∑
X

1

4z

∫
d(ξ·Ph) d2ξT
(2π)3

e−ik·ξ

×
〈
0
∣∣∣Un[−∞;0]ψ(0)

∣∣∣hX
〉 〈
hX
∣∣∣ψ(ξ)Un[ξ;−∞]

∣∣∣ 0
〉
.

(18)

The reason for writing the fragmentation correlator this
way is the following. When we say in Table 1 that the re-
summation of all collinear interactions amounts to attach-
ing Wilson lines to the external legs of the diagram, this
applies to the color structure of the Wilson lines. How-
ever, the field operators A in the gauge-link connecting
to ξ belong to the matrix element 〈hX|ψ(ξ)|0〉, while the
fields in the gauge-link connecting to the point 0 belongs
to the matrix element 〈0|ψ(0)|hX〉. Amore detailed discus-
sion on this point was given in [23]. Certainly when consid-
ering proton–proton scattering, where more complicated
gauge-link structures will appear, this becomes a very cum-
bersome notation. In Fig. 2 we have symbolically written
it as

∆[−]q (z, kT )

=
∑
X

1

4z

∫
d(ξ·Ph) d2ξT
(2π)3

e−ik·ξ 〈ψ(ξ)U [−]† ψ(0) 〉

(19)

and assume that it is understood that fields that connect
to the point ξ or 0 appear in the appropriate matrix elem-
ents. In the appendix we use similar symbolic notations for
the quark and gluon fragmentation correlators. In expres-
sion (19) we have also included the transverse pieces of the
gauge-links.

3.3 Distribution in quark–quark scattering
in proton–proton collisions

The quark–quark scattering diagram in Fig. 3a is one of the
partonic processes that contributes in proton–proton colli-
sions. In this example we will calculate the gauge-link that
enters in the correlation function Φq(p1) of the quark in the
lower-left corner. This gauge-link was already calculated
in [23] (c.f. (A10–A11)). The expression for the diagram in
Fig. 3a is proportional to the color-traced expression

Tr
[
Φq(p1)t

a∆q(k1)t
b
]
Tr
[
Φq(p2)t

a∆q(k2)t
b
]
. (20)

Following step 2, we resum all interactions of collinear
gluons coming from Φq(p1) by attaching the appropri-
ate Wilson lines to all the matrix elements in Φq(p2) and
∆q(ki) (see (14a) and (14c)) as prescribed by Table 1. This
amounts to making the replacements (17) and (15a) for
the quark correlator Φq(p2) and fragmentation correla-
tors ∆q(ki), respectively. For the same reason as in ex-
ample 3.1 the correlator Φq(p1) is left untouched. With
these substitutions the expression (20) becomes, including
the transverse pieces of the gauge-links,

Tr
[
Φq(p1)t

aU [+]tb
]
Tr
[
U [−]†taU [+]tb

]
. (21)

As it stands in (21), the future and past pointing Wilson
lines cannot be absorbed in the correlatorΦq(p1). However,
using the color flow identity (13) it can be rewritten to

Tr

[
Φq(p1)

(
N2c+1

N2c−1
U [+]
Tr
[
U [+]U [−]†

]
Nc

−
2

N2c−1
U [+]U [−]†U [+]

)
tatb
]
Tr
[
tatb
]
. (22)

In this expression all link structures multiply the correla-
torΦq(p1), as required by step 3. The structure multiplying
the correlator can now be absorbed in it. What remains is

the expression for the tree-level diagram Tr
[
Φ
[U ]
q (p1)t

atb
]

×Tr
[
tatb
]
involving the gauge invariant correlator

Φ[U ]q (x1, p1T )

=

∫
d(ξ·P )d2ξT
(2π)3

eip1·ξ
〈
H

∣∣∣∣ψ(0)
{
N2c+1

N2c−1

Tr
(
U [�]
)

Nc
U [+]

−
2

N2c−1
U [�]U [+]

}
ψ(ξ)

∣∣∣∣H
〉
. (23)

Fig. 3. Three examples of partonic scattering processes that
contribute in proton-proton collisions: a a quark–quark scat-
tering contribution; b a quark–gluon scattering contribution; c
a gluon–gluon scattering contribution
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This agrees with the result obtained in (A11a) in [23]. The
gauge invariant correlators for the other quark–quark scat-
tering channels are enumerated in Table 2 in the appendix.

3.4 Distribution in quark–gluon scattering in
proton–proton collisions

As our fourth example we will consider the diagram in
Fig. 3b, which is one of the possible quark–gluon scattering
diagrams contributing in proton–proton collisions. We will
calculate the gauge-link structure in the correlation func-
tion for the incoming gluon in the lower-left corner. The
gluon correlators contain gluon fields involving, at lead-
ing order, transverse indices and they can be expressed in
terms of the field strength tensor. The matrix elements in
the correlators (omitting the Lorentz indices on the fields)
are [16, 36–39]

(
Φg
)
ab
(p)

=
∑
X

∫
d4ξ

(2π)4
eip·ξ 〈X|Fa(ξ) |H〉 〈H|Fb(0) |X〉 (24a)

for the gluon distribution correlator and

(
∆g
)
ab
(k)

=
∑
X

∫
d4ξ

(2π)4
e−ik·ξ 〈0|Fa(0) |hX〉 〈hX|Fb(ξ) |0〉 (24b)

for the gluon fragmentation correlator. The color part of
the expression for the diagram in Fig. 3b is

Tr
[
Φq(p2)t

a∆q(k2)t
b
]

× ifacd if bc
′d′
(
∆g
)
cc′
(k1)
(
Φg
)
d′d
(p1) . (25)

Following step 2, we resum all interactions of collinear glu-
ons for Φg(p1) by attaching the appropriate Wilson lines
to all the matrix elements in (14) and (24) as prescribed
by Table 1. This amounts to making the replacements (17)
and (15a) for the quark distribution and fragmentation
correlators, respectively, and the replacement

(
∆g
)
ab
(k1)→

(
Un[0;∞]U

n
[∞;ξ]

)
ab
, (26)

for the gluon fragmentation correlator. For the same rea-
son as in example 3.1 the gluon correlator Φg(p1) is left
untouched. Expression (25) now becomes, including the
transverse pieces of the gauge-links,

Tr
[
U [−]†taU [+]tb

]
ifacd if bc

′d′ U [+]
cc′

(
Φg
)
d′d
(p1)

=
1

TF
Tr
[
U [−]†taU [+]tb

]

×Tr
[
[ta, td]U [+][tb, td

′
]U [+]†

] (
Φg
)
d′d
(p1)

=−2TFNc Tr
[
tdU [+]td

′

×
(
1
2U
[−]†+ 12

Tr[U [�]]

Nc
U [+]†

)] (
Φg
)
d′d
(p1) ,

where we have used (11) in the first step and the color flow
identity (13) in the second step. Inserting the expression
for the gluon correlator (24a), we see that the expression
for the gauge invariant gluon correlator corresponding to
the incoming gluon in Fig. 3b is

Φ[U ]g (x1, p1T )

=

∫
d(ξ·P )d2ξT
(2π)3

eip1·ξ
〈
H
∣∣∣Tr
[
F (0)U [+] F (ξ)

×
{
1
2U
[−]†+ 12

Tr[U [�]]

Nc
U [+]†

}] ∣∣∣H
〉
. (27)

The factor −2TFNc was not included in the gluon correla-
tor, since this is the color factor of the tree-level diagram.
The gauge-links for the other quark–gluon scattering chan-
nels are enumerated in Table 4 in the appendix.

3.5 Distribution in gluon–gluon scattering
in proton–proton collisions

As said, the gauge-link is obtained by pulling the color
structure of the Wilson lines attached to all the external
legs through the hard part. Therefore, it was only neces-
sary to take the color structure of the hard parts into ac-
count in the previous examples. That is allowed in those
examples, because the color structure of the hard parts can
be factored from the rest of the diagram. For gluon–gluon
scattering processes involving only three-point vertices this
is also the case. When considering diagrams containing
four-gluon vertices the color structure is more complex.
The vertex is given by

=−ig2
(
fabef cde gµ[ρgσ]ν

+facef bde gµ[νgσ]ρ

+fadef bce gµ[νgρ]σ
)
.

However, a diagram containing such a four-gluon vertex
can be written as a sum of terms, with a multiplicative
color structure for each term separately. The color struc-
ture of these terms correspond to the color structure of one
of the diagrams with only three-point vertices in Table 8.
The terms will, then, get the corresponding gauge-link
multiplied by the color factor of that diagram. As an ex-
plicit example we take the diagram in Fig. 3c:

∝
(
c1 f

a1a6bfa3a8b+c2 f
a1a3bfa6a8b

+c3 f
a1a8bfa3a6b

)
×
(
c1 f

a2a5cfa4a7c+c2 f
a2a4cfa5a7c

+c3 f
a2a7cfa4a5c

)
,

(28)

where the ci are functions of the kinematical variables of
the process. The r.h.s. can be represented by

(29)
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Diagrams in this expression only depict the color part
of that diagram. The expression for Fig. 3c is obtained
from (29) by replacing the diagrams by their color factors
times their gauge-links, as they can be read from Table 8.
Note that not each term appearing in the expression above
appears in that table, such as, for instance, the third struc-
ture in (29). This term is related to the first by interchang-
ing the two outgoing particles. Therefore, its gauge-link
structure is identical to that term. Similarly, diagrams that
are simply related to one of the diagrams in Table 8 by in-
terchanging the two outgoing particles were not included
in that table, since the gauge-link structures are identical.
With these remarks in mind we find that the color part of
the expression for Fig. 3c is

Φ[1]g (p1)Φ
[1]
g (p2)

[
4TFN

2
c (c1c1+c3c3)

]
∆[1]g (k1)∆

[1]
g (k2)

+Φ[2]g (p1)Φ
[2]
g (p2)

[
4TFN

2
c (c2c2+c1c2

−c2c3)
]
∆[2]g (k1)∆

[2]
g (k2)

+Φ[3]g (p1)Φ
[3]
g (p2)

[
4TFN

2
c c1c3

]
∆[3]g (k1)∆

[3]
g (k2) ,

(30)

where Φ
[1]
g , Φ

[2]
g and Φ

[3]
g are the first, second and third dis-

tribution correlators in Table 8, respectively (and similarly

for the fragmentation correlators∆
[i]
g ).

4 Resummation of collinear gluons
into gauge-links

In this section we will give some leading twist arguments
to argue the correctness of the conjectures made in the
previous sections. These arguments can possibly be gener-
alized to subleading twist using the methodology of [34].
We will take the partonic process φ(p′)q(p1)q̄(p2)g(p3)→
q̄(k1)q(k2)g(k3) as an example; see Fig. 4. We do not spec-
ify what kind of parton φ(p′) is, since that is not important
at this stage (hence the dashed line). This process is only
schematic, chosen such that it contains all types of par-
tons in the initial and in the final state. Therefore, our
results are straightforwardly generalized to arbitrary par-
tonic processes.
In a hadronic scattering process the diagram in Fig. 4 is

described by a truncated Green’s function Γ a2a1(i2j2)(i1j1)
with

Fig. 4. The truncated Green’s function Γ a2a1
(i2j2)(i1j1)

(p′, p1, p2,

p3, k1, k2, k3)

(approximately) on mass-shell external momenta. The ex-
ternal legs of this Green’s function are connected to corre-
lators (or possibly to cut propagators), that is

(
Φq
)
i1k
(p1),(

Φq
)
li2
(p2),

(
Φg
)
a1b
(p3),

(
∆q
)
j1m
(k1),

(
∆q
)
nj2
(k2) and(

∆g
)
ca2
(k3). Indices i and j will denote color-triplet in-

dices and indices a and b will be color-octet indices. Here
we will calculate the gauge-link that enters in the corre-
lator Φ(p′) corresponding to the parton φ(p′). It is de-
termined by resumming all insertions of collinear gluons
coming from the same hadron as φ(p′). Two examples of
single-gluon insertions are depicted in Fig. 5. The gluon p
couples everywhere except to the external leg correspond-
ing to φ(p′−p). This parton involves the generic correlator

Φaµ(p′−p, p)∝

∫
d4ξ

(2π)4
d4η

(2π)4
ei(p

′−p)·ξeip·η

×〈P |φ†(0)Aaµ(η)φ(ξ) |P 〉 . (31)

To leading twist it is collinear to the parent hadron, im-
plying that Φµ(p′−p, p)∝ Pµ. The same holds true for the
corresponding partons p= xP and p′ = x′P . Therefore, the
expressions in Fig. 5 are effectively contracted with Pµ

(compare this with theWard–Takahashi identity where the
hard process in contracted with pµ = xPµ).
We will start by considering all interactions of the

collinear gluon p with external partons (except the one
with φ(p′)). These interactions all involve three-point ver-
tices that, in QCD, can be factored in a vector and a color
part; see Fig. 6. We use T a to denote any representa-
tion of the color matrices, such that this is the funda-
mental or defining representation whenever we use color-
triplet indices (T a)ij = t

a
ij and the adjoint representation

whenever we use color-octet indices (T a)bc=− ifabc. For
instance, the quark–quark–gluon vertex is igV µ(T a)ji =
igγµtaji. With this notation the sum of all interactions with
the external partons is (here and in the rest of this section
we suppress all Dirac and Lorentz indices, except the one

Fig. 5. Two possible one-gluon insertions where the gluon
momentum p is collinear to p′: a the insertion of the addi-
tional collinear gluon in the truncated amplitude involving the

truncated Green’s function Γ
(µa)a2a1
(i2j2)(i1j1)

(p; p′−p, p1, p2, p3, k1,

k2, k3); b the insertion of the additional collinear gluon to the
outgoing quark
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Fig. 6. Three-point vertices
in QCD

that is contracted with the hadron momentum P )

Pµ igV
µ(T a)j2j′ Sj′j(k2−p)

×Γ a2a1(i2j)(i1j1)
(p′−p, p1, p2, p3, k1, k2−p, k3)

(outgoing quark) (32a)

+Pµ igV
µ(T a)i2i′ Si′i

(
−(p2+p)

)
×Γ a2a1(ij2)(i1j1)

(p′−p, p1, p2+p, p3, k1, k2, k3)

(incoming antiquark)

(32b)

+Pµ igW
µ(T a)a2b′ Db′b(k3−p)

×Γ ba1(i2j2)(i1j1)(p
′−p, p1, p2, p3, k1, k2, k3−p)

(outgoing gluon) (32c)

+Sii′(p1+p) Pµ igV
µ(T a)i′i1

×Γ a2a1(i2j2)(ij1)
(p′−p, p1+p, p2, p3, k1, k2, k3)

(incoming quark) (32d)

+Sjj′
(
−(k1−p)

)
Pµ igV

µ(T a)j′j1
×Γ a2a1(i2j2)(i1j)

(p′−p, p1, p2, p3, k1−p, k2, k3)

(outgoing antiquark)

(32e)

+Dbb′(p3+p) Pµ igW
µ(T a)b′a1

×Γ a2b(i2j2)(i1j1)(p
′−p, p1, p2, p3+p, k1, k2, k3)

(incoming gluon) . (32f)

The propagators S and D are quark and gluon prop-
agators respectively (for convenience we use a time-like
axial gauge). With the notations defined above we see that
the term (32a) represents the diagram where the collinear
gluon p couples to the outgoing quark k2, Fig. 5b. In this
case the vertex and the additional propagator are

Pµ igV
µ(T a)j2j′ Sj′j(k2−p)

= ig /Ptaj2j′ δj′j
i(/k2−/p)

(k2−p)2+iε
. (33)

As said at the beginning of this section, this expression will
appear left-multiplied by the quark fragmentation corre-
lator ∆(k2). The product ∆(k2) /k2 will only contribute at
O(1/Q) and can be neglected in our leading twist discus-
sion. Therefore (33) effectively equals

Pµ igV
µ(T a)j2j′ Sj′j(k2−p) =

g(T a)j2j
x− iε

, (34)

where we have also used that at leading twist all the ex-
ternal momenta can be treated on mass-shell p2i = k

2
i = P

2

= 0.With the effective form (34) the term corresponding to
the outgoing quark k2 becomes

g(T a)j2j
x− iε

Γ a2a1(i2j)(i1j1)
(p′, p1, p2, p3, k1, k2, k3)

+
g(T a)j2j
x− iε

{
Γ a2a1(i2j)(i1j1)

(p′−p, p1, p2, p3, k1, k2−p, k3)

−Γ a2a1(i2j)(i1j1)
(p′, p1, p2, p3, k1, k2, k3)

}
,

(35)

where we have added and subtracted a term correspond-
ing to a zero-momentum gluon pµ = 0µ. The second line
of (35) is actually pole independent, because the residue of
the expression between braces { · · · } vanishes at the pole
x= 0. Therefore, the (x−iε)−1 in the second line may be
replaced by any other pole prescription. All other external
legs can be handled similarly, for gluons using that at lead-
ing twist kνΦ

νρ
g (k) and the gauge-dependent terms do not

contribute.
Next we will consider the internal interactions of the

collinear gluon with the Green’s function. The sum of
all internal insertions can be obtained from a Ward–
Takahashi identity for truncated Green’s functions in the
axial gauge (making the same suppression of indices as was
mentioned earlier)

∑
internal
insertions

pµ Γ
(µa)a2a1
(i2j2)(i1j1)

(p; p′−p, p1, p2, p3, k1, k2, k3)

=−g(T a)j2j Γ
a2a1
(i2j)(i1j1)

(p′−p, p1, p2, p3, k1, k2−p, k3)

(outgoing quark) (36a)

− g(T a)i2i Γ
a2a1
(ij2)(i1j1)

(p′−p, p1, p2+p, p3, k1, k2, k3)

(incoming antiquark)

(36b)

− g(T a)a2b Γ
ba1
(i2j2)(i1j1)

(p′−p, p1, p2, p3, k1, k2, k3−p)

(outgoing gluon) (36c)

+Γ a2a1(i2j2)(ij1)
(p′−p, p1+p, p2, p3, k1, k2, k3) g(T

a)ii1

(incoming quark) (36d)

+Γ a2a1(i2j2)(i1j)
(p′−p, p1, p2, p3, k1−p, k2, k3) g(T

a)jj1

(outgoing antiquark) (36e)

+Γ a2b(i2j2)(i1j1)(p
′−p, p1, p2, p3+p, k1, k2, k3) g(T

a)ba1

(incoming gluon) (36f)

+Γ a2a1(i2j2)(i1j1)
(p′, p1, p2, p3, k1, k2, k3) gT

a(φ)

(incoming φ(p′)) . (36g)
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(The representation T a(φ) of the color matrices depends
on the nature of parton φ(p′)). This is pictorially rep-
resented in Fig. 7 where the blobs represent truncated
Green’s functions and where one should only include the
color factors of the other perturbative elements. In our
application we contract the expression with the vector
Pµ rather than with pµ = xPµ. That expression can be
obtained from (36) by dividing out the momentum frac-
tion x. In doing so one is creating a new pole at x= 0 that
needs to be treated with a certain pole prescription. We
will write [x−1] to indicate any pole prescription. It is ir-
relevant which prescription is taken due to the following
observation. Dividing (36) by x we see that (36a) cancels
the first term in the second line of (35) whichever prescrip-
tion was taken, since that term was independent of the pole
prescription. There is a similar cancellation between all
terms corresponding to the same external partons in (32)
and (36), except for parton φ(p′). The total result for all in-
ternal and leg insertions (except to φ(p′)) of the collinear
gluon p with polarization along P , then, becomes

∑
insertions

Pµ Γ
(µa)a2a1
(i2j2)(i1j1)

(p; p′−p, p1, p2, p3, k1, k2, k3)

=
g(T a)j2j
x− iε

Γ
a2a1
(i2j)(i1j1)

(p′, pi, ki)

(outgoing quark) (37a)

+
g(T a)i2i
x+iε

Γ
a2a1
(ij2)(i1j1)

(p′, pi, ki)

(incoming antiquark) (37b)

+
g(T a)a2b
x− iε

Γ ba1(i2j2)(i1j1)(p
′, pi, ki)

(outgoing gluon) (37c)

−Γ a2a1(i2j2)(ij1)
(p′, pi, ki)

g(T a)ii1
x+iε
(incoming quark) (37d)

−Γ a2a1(i2j2)(i1j)
(p′, pi, ki)

g(T a)jj1
x− iε
(outgoing antiquark) (37e)

Fig. 7.Ward–Takahashi identity for truncated Green’s functions in QCD

−Γ a2b(i2j2)(i1j1)(p
′, pi, ki)

g(T a)ba1
x+iε

(incoming gluon) (37f)

− g
[1
x

]{
(T a)j2j Γ

a2a1
(i2j)(i1j1)

(p′, pi, ki)

+ (T a)i2i Γ
a2a1
(ij2)(i1j1)

(p′, pi, ki)

+ (T a)a2b Γ
ba1
(i2j2)(i1j1)

(p′, pi, ki)

−Γ a2a1(i2j2)(ij1)
(p′, pi, ki)(T

a)ii1

−Γ a2a1(i2j2)(i1j)
(p′, pi, ki) (T

a)jj1

−Γ a2b(i2j2)(i1j1)(p
′, pi, ki) (T

a)ba1

−Γ a2a1(i2j1)(i1j2)
(p′, pi, ki)T

a(φ)
}
,

where p= xP . The expression between braces { · · · } van-
ishes due to the Ward–Takahashi identity (36) for a zero-
momentum gluon pµ = 0µ (this is a reflection of color
charge conservation). The result shows that the resumma-
tion of all single-gluon insertions amounts to multiplying
the external legs of the basic Green’s function by factors
that depend only on the momentum fraction x of the in-
serted gluon. The integration over this momentum fraction
can be performed independently from the internal struc-
ture of the Green’s function that does not depend on x.
It is interesting to consider the Fourier transform of ex-

pression (37). Integrating over all momentum fractions x
and explicitly writing the

∫
dη−

2π
eixP

+(η−−ξ−) n·Aa(η) , (38)

that is contained in the correlator Φa(p′−p, p) in (31), it
becomes
∫
dη−

2π

∫
dx eixP

+(η−−ξ−)

∑
insertions

n·Aa(η) Pµ Γ
(µa)a2a1
(i2j2)(i1j1)

(p; p′−p, pi, ki)

=
{ (
U[+∞;ξ]

)
j2j

(
U[−∞;ξ]

)
i2i

×
(
U[ξ;−∞]

)
i′i1

(
U[ξ;+∞]

)
j′j1
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×
(
U[+∞;ξ]

)
a2b

(
U[ξ;−∞]

)
b′a1

}g
Γ bb

′

(ij)(i′j′)(p
′, pi, ki) ,

(39)

where { · · · }g refers to the order g1 term of the combination
of Wilson lines. These Wilson lines are given by

U[α;β] = P exp
[
− ig

∫ β
α

dη− n·Aa(η) T a
]
, (40)

in the fundamental representation for fermions and in the
adjoint representation for gluons (cf. (7) and (12)).
So far we have taken all collinear interactions of a single

gluon into account. The expression for two-gluon inter-
actions gives the order g2 analogue of (39) upon Fourier
transformation, etc. Thus, we have found that resumming
all collinear interactions amounts to attachingWilson lines
to every external leg other than the one corresponding to
φ(p′), where the dimension of the representations and the
direction of the Wilson lines depend on the nature of the

Table 2. Gauge-links appearing in qq→ qq

Table 3. Gauge-links appearing in qq̄→ qq̄

external legs

(
U[+∞;ξ]

)
j2j

(
U[−∞;ξ]

)
i2i

(
U[+∞;ξ]

)
a2b

×Γ bb
′

(ij)(i′j′)(p
′, pi, ki)

×
(
U[ξ;−∞]

)
i′i1

(
U[ξ;+∞]

)
j′j1

(
U[ξ;−∞]

)
b′a1
. (41)

Note that this refers only to the color structure of the
Wilson lines, since the field operators A(η) appear in the
correlator Φ(p′) for parton φ(p′).
The procedure outlined above applies to the amplitude

on the l.h.s. of the cut in the diagram for the scattering
cross section. The analogous results for the r.h.s. of the cut,
which corresponds to the hermitian conjugate of an ampli-
tude, can be obtained from (41) in the obvious way. That
is, by hermitian conjugation. Since on the r.h.s. of the cut
ξ = 0 in the exponent in equation (38) and since hermitian
conjugation reverses the direction of the Wilson lines we
get the results summarized in Table 1. The emergence of
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Table 4. Gauge-links appearing in qg→ qg

transverse pieces requires extension to higher twist and will
proceed along the same lines as discussed in [34] or [21].
We would like to emphasize that the results obtained

so far do not depend on the internal structure of the
Green’s functions. Only the nature of the external par-
tons of the Green’s functions matter. However, expres-
sion (41) is not the final answer yet. This is because the
Wilson lines cannot be absorbed directly into the corre-
lator Φ(p′) of the parton φ(p′) as it stands in (41). To
achieve that, one should pull the Wilson lines through
the hard parts Γ (p′, pi, ki), moving all their color struc-
tures to the external leg corresponding to the parton φ(p′).
This can be done by using color flow arguments such
as (13). It is at this point that the internal color struc-
ture of the Green’s function becomes important and that
the subprocess dependence comes in. Once that all the
Wilson lines have been moved to the external leg cor-

responding to parton φ(p′), they combine into the full
gauge-link. This gauge-link can now be absorbed in the
correlator Φ(p′), thereby defining a new and gauge invari-
ant correlator. This procedure must be followed for each
correlator in the scattering process (for difficulties asso-
ciated with intertwined insertions from different correla-
tors we refer to [34]). Absorbing all the Wilson lines in
the proper correlators, one has obtained the gauge in-
variant expression for the process represented by the par-
ticular diagram Γ (p′, pi, ki). In this derivation we have
used the axial gauge, such that there are no ghost fields.
However, in other gauges these should properly be taken
into account. In [24] some of the subtleties arising when
the Feynman gauge is used are discussed. In that refer-
ence the same results as described here are obtained by
explicitly working out several examples in the Feynman
gauge.
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Table 5. Gauge-links appearing in q̄g→ q̄g

5 Conclusions

High-energy hadronic scattering processes can be de-
scribed as convolutions of nonperturbative parton distri-
bution and fragmentation functions with a perturbative
hard partonic subprocess. The parton distribution and
fragmentation functions are nonlocal matrix elements of
the parton field operators. These matrix elements contain
gauge-links, path-ordered exponentials, rendering them
properly gauge invariant. The gauge-links are obtained by
resumming all collinear gluon exchanges between the hard
part and the distribution (fragmentation) function. In this
case collinearity refers to the momentum direction of the
hadron to which the distribution or fragmentation func-
tion belongs. For many observables the parton momentum
along the hadron momentum is the only relevant momen-
tum component, the other components being integrated

over. In these collinear distribution and fragmentation
functions the field operators in the matrix elements are
separated along the light-cone. The gauge-link built from
collinear gluons is, then, a simple Wilson line along this
light-cone direction.
The colored fields appearing in the hadronic matrix

elements of TMD distribution and fragmentation func-
tions are not only separated in the light-cone direction,
but also in the transverse direction (conjugate to the meas-
ured intrinsic transverse momentum of partons). In that
case there is no unique way of connecting the fields with
a gauge-link. Which gauge-link appears between the par-
ton fields is determined by the resummation of all collinear
gluon exchanges and, as such, is determined by the hard
part of the process. It turns out that the resummation leads
to gauge-links running to infinity in the direction conjugate
to the, in the high-energy limit light-like, hadron momen-
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Table 6. Gauge-links appearing in qq̄→ gg

tum. Going beyond leading twist, contributions are found
that close the gauge-links at (plus or minus) infinity.
In the description of single-spin asymmetries time re-

versal behavior is a distinctive feature. One needs an odd
number (typically one) of T -odd distribution or fragmenta-
tion functions. T -odd functions appear when the intrinsic
transverse momentum of the partons is taken into account.
Since the full transverse momentum dependence requires
a treatment beyond leading twist, it is more appropriate
to look at transverse moments, i.e. functions weighed with
some power of the transverse momentum [21, 40]. These
functions appear at subleading order in an expansion in the
inverse hard scale in integrated cross sections, but also at
leading order in appropriately weighted cross sections. In
particular for the transverse moments of T -odd distribu-

tion functions one uniquely picks up contributions of glu-
onic pole matrix elements. These contain transverse gluon
fields at infinity that find their origin in the gauge-links.
The reason is that gluonic pole matrix elements typically
have opposite time reversal behavior compared to the ma-
trix elements without the zero-momentum gluon fields.
In SIDIS and DY the resummation of all collinear gluon

exchanges leads to the familiar future (U [+]) and past
(U [−]) pointing Wilson lines, respectively, leading for the
first transversemoments to T -odd correlators that differ by
a sign. In these examples the resummation of all collinear
gluon exchanges is straightforward, involving only final-
state interactions in SIDIS and only initial state inter-
actions in DY. However, when considering more compli-
cated hadronic processes, such as p↑p→ ππX, the resum-
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Table 7. Gauge-links appearing in gg→ qq̄

mation of all collinear gluon exchanges grows increasingly
tedious, quickly becoming too involved for practical pur-
poses. In this paper we have presented a prescription for
deriving the resulting gauge-links simply by considering
the color structure of the hard part and the nature of its
external particles. This prescription leads to a shortcut for
the resummation providing a practical tool that makes the
calculation of the gauge-links straightforward. Using this
algorithm, the gauge-links appearing in all the tree-level
2→ 2 parton scattering processes through strong interac-
tions were calculated and are enumerated in the appendix.
The procedure shows that it is the flow of color rather

than the flow of fermion number which determines the
structure of gauge-links and, thus, also the way in which
gluonic pole matrix elements contribute. For instance, in

eq→ eq via photon exchange the color of the quark flows
into the final state resulting in a U [+]-link. In contrast, in
q̄q→ q̄q scattering via one-gluon exchange the dominant
contribution is color annihilation in the initial state, with
1/Nc corrections. This leads to a gauge-link that is pre-
dominantly in the U [−] direction. Another example is qq̄→
eē via annihilation into a photon. Here there is color anni-
hilation leading to a U [−]. In qq̄→ qq̄ via annihilation into
a gluon, on the other hand, the color flow is mostly into the
final state (with 1/Nc corrections) leading to a gauge-link
that is predominantly in the U [+] direction (times a traced
loop that does not contribute to transverse moments).
In an earlier paper [23] it was shown how the expression

for single-spin asymmetries can still be cast into a convo-
lution of distributions, fragmentations and hard parts even
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Table 8. Gauge-links appearing in the diagrams without 4-point vertices that contribute in gg→ gg

when the gauge-links are incorporated. The hard parts are
referred to as gluonic pole cross sections. Using the results
obtained here we will be able to present all possible glu-
onic pole cross sections appearing in processes like proton–
proton scattering in a forthcoming publication. The use of
these gluonic pole cross sections is important in processes
like two-jet or inclusive two-pion production in proton–
proton scattering, while it may also modify the standard
approach used for single-pion production [41, 42].
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Appendix

Gauge-links for 2→ 2 parton processes

In Table 2–8 we enumerate all the gauge-links that appear
in hard scattering processes with 2→ 2 partonic subpro-
cesses at tree-level. For the fragmentation correlators we
use the symbolic notation discussed in Sect. 3.2. In the case
of gluon (fragmentation) correlators the gauge-links might
depend on whether the gluons couple to a quark or an an-
tiquark. If both situations occur in the same diagram, we

will distinguish these by writing Φg(q) (∆g(q)) and Φg(q̄)
(∆g(q̄)). The diagrams involving four-gluon vertices can be
obtained from the diagrams in Table 8 in the way discussed
in Sect. 3.5.
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